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The hydrodynamic influence of deformable porous surface layers on the motion of a 
rigid sphere falling in a narrow cylindrical tube filled with a stationary Newtonian fluid 
is studied using lubrication theory. The porous layers on both the surface of the tube 
and the sphere are modelled as binary mixtures of solid and liquid components. The 
sphere is placed at an arbitrary position in the tube and is free to rotate. Effects of the 
clearance between the sphere and the tube, the eccentricity of the position of the sphere 
and the properties of the surface layers on the velocity and rotation of the sphere are 
studied. It is found that, when the lengthscale on which the velocity varies within the 
porous layer is much smaller than the clearance, the effects of the porous layer can be 
represented by an equivalent slip boundary condition, the slip velocity at the boundary 
being proportional to the local shear rate. The slip velocities have a strong influence on 
the motion of the sphere when the clearance is small. For a given clearance and slip 
parameters, both the falling and rotation velocities of the sphere increase with the 
sphere eccentricity. The shear stresses on the surfaces of both the tube and the sphere 
are greatly reduced when slip boundary conditions are applied, as is the pressure 
gradient in the region between the sphere and the tube wall. This work could have some 
relevance to the creeping motion of blood cells in the microcirculation where the 
glycocalyx, a polysaccharide-rich layer, covers the external surfaces of both endothelial 
and red blood cells. 

1. Introduction 
This study is motivated by the problem of the motion of blood cells in a small 

capillary. Capillaries are the smallest blood vessels in the body, about 6-12 pm in 
diameter. They are lined with a layer of endothelial cells, through which the plasma and 
blood cells flow. The plasma itself is known to behave as a Newtonian viscous fluid 
although it contains several types of protein molecules in suspension (Cokelet et al. 
1963; Merrill et al. 1965). There is increasing interest in the effects of blood flow on 
vascular endothelial cells because of the possible influence of flow on vascular biology 
and pathobiology (Nerem & Girard 1990; Fung & Liu 1993). Many properties of 
endothelial cells in culture depend upon the fluid dynamical conditions in the culture 
medium. The mechanisms underlying these effects are unclear but it seems plausible 
that cell-fluid interactions are mediated or at least influenced by the glycocalyx. The 
glycocalyx is a broad term for all polysaccharide-containing structures on the external 
surface of cells. Both red blood cells and endothelial cells possess glycocalyx. It 
contains glycopro teins, which are complex branched flexible highly charged molecules, 
and also plasma proteins, such as albumin and fibrinogen. Its thickness is about 
50-80 nm in arteries (Haldenby et al. 1994) and is estimated to be up to 1 pm in 
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capillaries (Silberberg 1991). It is difficult, however, to determine its composition 
quantitatively. Arguments based on the behaviour of similar molecules in tissue or 
model systems suggest that it has the physical properties of a viscoelastic gel (Curry 
1984). Being the outer barrier between the environment and the cell, the surface 
component may play an important role in controlling the immediate external cell 
environment and thereby influence many transmembrane transport and transduction 
processes. Its influence on vessel wall shear stress may also be linked to the 
development of atherosclerosis in arteries (Caro 1982). 

In this paper, we consider a simplified model which will have some relevance to the 
motion of a blood cell in a capillary: a sphere falling in a cylindrical tube with thin 
uncharged deformable porous layers on the surfaces of both the sphere and the tube. 
In the microcirculation, the elastic properties of red blood cell membranes allows them 
to deform when exposed to shear stresses (Secomb et al. 1986) and there are generally 
a number of red blood cells in a single capillary, although Wang & Skalak (1969), in 
a model study of a train of spheres in a narrow capillary, conclude that the spheres 
behave independently when they are more than one diameter apart. Also, blood cells 
are driven by a pressure difference, whereas in the model we consider the simpler 
condition of the motion of a sphere under gravity which will allow us to focus on the 
hydrodynamic influence of the glycocalyx layer. The radius of the tube is taken to be 
only slightly larger than that of the sphere, so that the clearance between the sphere and 
the tube is small compared with the radius of the sphere. The Reynolds number of the 
flow is much smaller than 1. Lubication theory is applicable in a region around the 
equator of the sphere. The pressure drop across the lubrication zone is linearly related 
to the weight of the sphere. 

Brenner & Happel (1958) studied the problem of the motion of a sphere in a tube 
using a reflection method, in which the sphere is constrained not to rotate and the 
solution is valid when the radius of the sphere is much smaller than that of the tube. 
Bohlin (1960) gave an approximate solution for a sphere moving on the axis of a tube, 
using an extension of the reflection method. The motion of a sphere taking an eccentric 
position in a tube was studied using lubrication theory (Christopherson & Dowson 
1959). There are, however, two assumptions in their work which are not warranted a 
priori: (i) they assumed that the stable position of the sphere could be determined by 
the minimum energy dissipation ; (ii) they assumed that lubrication theory, which 
should be valid only inside the lubrication region around the line of minimum 
clearance between the sphere and the tube, was applicable throughout the gap. Bungay 
& Brenner (1973) used a singular perturbation technique to study this problem in the 
absence of surface layers and showed that the lubrication approximations are the 
leading-order terms of a perturbation expansion. Chester (1984) studied the motion of 
a sphere in a slightly tilted tube where the eccentricity can be calculated by a force 
balance between the components of gravity and the net force due to pressure in the 
direction normal to the tube axis. Numerical methods have also been used by a number 
of researchers to study the motion of a sphere in a tube filled with Newtonian or non- 
Newtonian fluid; however, they were concerned mainly with non-Newtonian effects 
and the fixed sphere at the centre of the tube. The interesting problem of the rotation 
of a sphere is not addressed. 

In this paper, lubrication theory is used in a region around the equator of the sphere 
and the influence of deformable porous layers on the motion of the sphere, the flow 
field and the wall shear stress are investigated. Similar notation to that of 
Christopherson & Dowson (1959) is used and comparison is made with Bohlin’s (1960) 
approximate solution when the sphere is at the centre of the tube and no-slip boundary 
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conditions are applied. Comparison is also made with Christopherson & Dowson’s 
result when the sphere has an eccentric position, the clearance is small and no-slip 
boundary conditions are applied. 

2. Deformable porous layer 
The theory of mixtures has been used to model arterial wall permeability (Kenyon 

1979), articular cartilage (Lai, Hou & Mow 1991) and skin (Lanir et al. 1990). Most 
analyses have considered only one-dimensional or purely radial compression. Recent 
papers have considered the deformation of a porous surface layer in a shear flow (Hou 
et al. 1989; Barry, Parker & Aldis 1991). 

2.1. Governing equations in the porous medium 
The theory of mixtures used here is based on the work of Kenyon and Bowen (Kenyon 
1976; Bowen 1980). The porous medium is modelled as a binary mixture of solid and 
fluid phases; each point inside the porous medium is considered to be occupied by both 
solid and fluid phases simultaneously. It is assumed that there are no body forces in the 
porous medium. The solid phase is incompressible and has a homogenous isotropic 
structure and linear elasticity. The liquid phase is an incompressible Newtonian fluid 
with its volume fraction represented by q so that the volume fraction of the solid phase 
is 1 -q. The volume-averaged densities of the phases are represented by p f  and ps. The 
mass conservation equations derived by Mow et al. (1985) give, at steady state 

v-q = 0, 
V.S = 0, 

where q stands for the fluid velocity inside the porous material, s is the solid 
displacement vector and S is the solid velocity. Assuming infinitesimal solid 
deformation in the porous medium, q can be taken as a constant, and for sufficiently 
small Reynolds number, the momentum equations for the two phases are 

V. T f  + k(S-q) = 0, 
V - T s - k ( S - q )  = 0, 

where T f  and T s  are the stress tensors for fluid and solid phases respectively, k = p f / K  
is the drag coefficient with pf the fluid viscosity and K the flow permeability of the 
porous material. The last term in the momentum equation is an internal interaction 
force between the solid and fluid phases. The stress tensor can be expressed as 

T f  = - P ) P / + ~ / ~ E ,  
T s  = -(l-q)p/+hV.s/+2pe, 

where p is the volume-averaged pressure, 1 is the identity matrix, E = f(Vq + V q T )  is the 
rate-of-strain tensor for the fluid component, e = ~ ( V S  + VsT)  is the solid deformation 
tensor, p and h are the Lame coefficients and pa is the apparent viscosity in the porous 
medium, which is a function of pf and q. 

2.2. Conditions at the interface between a porous medium and a pure @uid 
Based on the axioms of mixture theory given by Truesdell & Toupin (1960), Hou er al. 
(1989) considered the boundary conditions between a fluid and a deformable porous 
medium using a binary mixture theory and derived a set of boundary conditions based 

(2.7) 
on conservation equations. 
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where n is the unit vector normal to the surface of discontinuity pointing into the fluid 
and 11 denotes the jump from the porous medium into the pure fluid where rp = 1, 
p a  = pf, q = v and 1" = 0. 

Further conditions at the porous interface are needed to solve the equations. They 
are the relationship between the tangential velocities at the interface and the 
distribution of shear stress between the fluid and the solid on the porous side of the 
interface. We make the following assumptions. 

(i) The volume-averaged velocity in the tangential direction is continuous across the 
porous interface : u~ (4 - s)n = 0, (2 9) 
where t is the unit vector tangent to the surface. 

fractions at the interface : 
(ii) The stress distribution between the two phases is proportional to their volume 

(2.10) 

where qt and s, are the tangential components of the fluid velocity and the solid 
displacement. 

The first assumption is the simplest which leads to the continuity of fluid velocities 
when rp + 1 and the no-slip condition when rp + 0. The second assumption dictates the 
distribution of the surface shear stress between the fluid and the solid at the interface 
and again is the simplest condition that gives the proper behaviour as p approaches 
both 0 and 1. The actual distribution of the shear stress will depend upon the 
microstructure of the porous material at the surface. Neither of these assumptions can 
be derived from conservation equations. 

3. Geometry 
As shown in figure 1, R is the radius of the tube taken to the outer boundary of the 

porous layer, a is the radius of the sphere, including the thickness of the porous layer, 
h(z,  4) is the local clearance between sphere and tube, e is the eccentricity (the distance 
between the sphere centre and the tube axis). The clearance is defined as c = R - a ,  W 
is the excess weight of the sphere ($nu3 Apg),  where Ap is the density difference between 
the sphere and the fluid. The cylindrical coordinates are fixed relative to the tube, with 
their origin at the instantaneous centre of the sphere. 

When the radius of the sphere and the radius of the tube are nearly the same, we 
consider a lubrication zone - d o  < 8 < 8, in which there is a thin fluid layer (part of 
it occupied by the porous layer) where the local clearance h measured parallel to the 
line from centre of sphere and perpendicular to tube axis can be expressed as 

In the gap, the variation of h in the circumferential direction is 
h = (R2 - e2 sin2 q5)1/2 + e cos 4 - (a2 - z2)ll2. (3.11 

e2 sin 4 cos 4 
= O(e)  

ah 
a(s - -esin4- (R2 - e2 sin2 q5)1/2 
_ -  

and its variation in the axial direction is 

Z 
= O(1). - ah 

az - (a2 - z ~ ) ~ / ~  (3.3) 

The eccentricity of the sphere, e,  is bounded by the clearance c. When c is small, the 
variation of local clearance in the circumferential direction is negligible compared with 
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c 
X 

FIGURE 1. Geometry and coordinates of an eccentric sphere of radius a falling in a vertical cylindrical 
tube of radius R. 19 is the angular coordinate in the vertical plane about the axis of rotation of the 
sphere. q5 is the angular coordinate about the vertical axis of the sphere defined so that q5 = 0 is the 
point at which the gap is maximum. e is the eccentricity of the centre of the sphere relative to the axis 
of the tube. h(z, $) is the local clearance between the sphere and the tube. W acts in the negative z- 
direction. 

I EF t Y  

FIGURE 2. Local Cartesian coordinates fixed on the surface of the tube in the lubrication zone. x is 
in the z-direction, y is the direction pointing to the centre of the sphere, h is the local clearance, eT 
is the thickness of the porous layer on the tube and eS is the thickness of the porous layer on the 
sphere. 

its variation in the axial direction. We therefore assume that, at any given 
circumferential position, q5, the problem can be treated in local two-dimensional 
Cartesian coordinates fixed at the interface between the fluid and porous layer of the 
tube (see figure 2). The x-axis is the axial direction of the tube and the y-axis is in the 
direction pointing instantaneously to the centre of the sphere so that -eT < y < 0 is 
the porous layer on the tube, 0 < y < h is the pure fluid region and h < y < h + eS is the 
porous layer on the sphere. The porous layers on the surfaces of the tube and sphere 
can be treated locally as flat plates. Inside the lubrication zone, -0, < 0 c 0,, the 
thickness of the fluid layer is everywhere small compared with the z lengthscale of the 
zone, and the velocity distribution at any section of the layer is approximately the same 
as in a uniform layer with the same layer thickness and pressure gradient (Batchelor 
1967, pp. 238-240). Because the local clearance h increases very quickly with z outside 
the lubrication zone, the velocity and pressure gradient there are negligible compared 
with those inside. The motion of the sphere is thus determined by the flow inside the 
lubrication zone. We must, of course, check that our results are consistent with our 
assumption that the circumferential pressure gradients are negligible. 
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4. Solutions using lubrication theory 
In the following analysis, the thicknesses of the porous layers on the tube E~ and on 

the sphere eS, the solid displacements in the x-direction s, and in the y-direction s,, the 
radius of the tube R, the eccentricity e, and the local clearance h are non- 
dimensionalized by the radius of the sphere, a. Velocities are non-dimensionalized by 
the descending velocity of the sphere U. The following further non-dimensionalizations 
are carried out: 

W. Wang and K.  H .  Parker 

pressure p’ = aU-lpY1p, 

drag coefficient k‘ = a2p;’k, 

excess weight of the sphere W’ = a-lpu;’U-l W,  

rotation velocity of the sphere 9’ = aU-lO, 
where a prime denotes non-dimensional variables. In order to compare the velocities 
of the sphere for different conditions in the results section, it is convenient to define 

where U ,  = W/(6xpf  a) is the Stokes velocity of the sphere in an unbounded fluid. For 
clarity, the prime is dropped in the equations and results hereafter. The following non- 
dimensional parameters arise from the non-dimensionalization of the conservation 
equations in the porous layer : 

U* = UU;’, O* = 9 a U i 1 ,  

In the following analysis, the porous layer on the surface of the tube is considered 
in detail and the results for the porous layer on the sphere are presented. At steady 
state, in the Cartesian coordinates fixed on the tube, the solid velocities are zero. The 
governing equations are : 

fluid phase 
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From the jump condition (2.7) we have 

0 2  = 4)42 
and from (2.8) we have 

(4.9) 

(4.10) 

(4.11) 

Inside the porous layer on the tube, assuming there are no sudden changes of 
velocity and pressure in the x-direction, aql/ax = 0(1), it can be shown that q1 = O(1). 
From the mass conservation equation (4.4), q, = O(E,) and is negligible compared with 
q l .  By comparing the order of each term in the momentum equations, it is seen that 
ap/ay is negligible compared with i3p/ax. To O(E,), the fluid momentum equation (4.7) 
reduces to 

The solid momentum equation (4.5) similarly reduces to 

ap a 2 3  

ax ay 
0 = -(l-rp) g-++++[kq,. 

(4.12) 

(4.13) 

In the pure fluid region inside the lubrication zone, the momentum equation (4.2) 
simplifies to 

(4.14) 

The boundary conditions are : 

y = - E ,  (rigid tube wall) s1 = 0, (4.15) 

41 = 0; (4.16) 

au, I as, aql - = ---+[-, 
aY 5 aY aY 

y = 0 (porous interface) (4.17) 

and the assumptions of matching conditions at the porous interfaces are, from (2.9), 

01 = 9% 
and from (2.10) 

(4.18) 

(4.19) 

From (4.12) with boundary and matching conditions, the fluid velocity at the 
interface between the porous layer and the pure fluid can be expressed as 

(4.20) 

From (4.14), au,/ay is of the order of the magnitude of h ap/ax. When the lengthscale 
on which the velocity varies in the porous layer is small compared with the local 
clearance 

h % min (+, k-l/'), 
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then 

and the second term on the right-hand side of (4.20) is negligible. The velocity at the 
porous interface on the tube can be written as 

where 

(4.21) 

This form of boundary condition is similar to that found in other theoretical and 
experimental work (Beavers & Joseph 1967; Taylor 1971; Richardson 1971; Saffman 
1971 ; Barry et al. 1991). 

A similar analysis is applied to the porous layer on the surface of the sphere. 
Considering the rotation and falling velocities of the sphere (positive SZ is the 
anticlockwise direction (figure 1 a), positive U is the z-direction (figure 1 b), the slip 
velocity at the porous interface on the sphere is 

y = h :  u1 = I /s-Ks-, au1 

aY 
(4.22) 

where v, = SZcosBcos$- 1 

is the velocity of the surface of the sphere and 

K~ = tanh (k’f eS)  
ks t s  

in which the subscript S denotes the parameters of the porous layer on the sphere, K~ 

and K~ are slip parameters. Equations (4.21) and (4.22) are the equivalent slip 
boundary conditions at the surfaces of the tube and sphere inside the lubrication zone, 
which represent the hydrodynamic effects of the porous layers on the flow when the 
lengthscale in the porous layer on which the velocity varies is small compared with the 
local clearance. These slip boundary conditions are applied in the following derivation 
of the motion of the sphere and comparison is made between the results with and 
without slip boundary condition at surfaces of the sphere and the tube. In the local 
Cartesian coordinates, by solving (4.14) with the boundary conditions (4.21) and 
(4.22), the velocity at point (x = cos 8,y) can be expressed as 

(4.23) 

where G = -apP/ax and h = h(B,$). The flux per unit circumferential width can be 
derived by integrating the velocity over the local clearance h(0, $): 

(4.24) h(h + 2 K T )  Q($) = p.,dL = -$Gh3+(V,+Gh~,+;Gh2) 
0 2(h + KT + K s ) ‘  

The pressure gradient G(8, $) can therefore be expressed in terms of the local flux Q($) 
as 

(4.25) 
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The shear stress on the surface of the sphere is 

(4.26) 

The shear force per unit circumferential width on the sphere, S($), can be calculated 
by integrating the shear stress 7(6, $) over the lubrication zone - 6, < 6 < 8, : 

S($) = -pfQr,+pfu,szcos$r2-p~r3, (4.27) 
where 

The pressure difference can be derived by integrating - G over the lubrication zone : 
(4.28) AP = Qr4 - sz cos $r5 + r,, 

where r,($) = LdO, I-',($) = 5cosBd6. 
-eo Ci -eo C i  

In the lubrication limit, at steady state, the excess weight of the sphere is balanced by 
the force due to the pressure difference (Christopherson & Dowson 1959; Chester 
1984) : 

-APX = W. (4.29) 
From (4.28) 

(4.30) 

The total torque on the sphere due to the shear stress can be derived by integrating 
the local shear force S(4) over the sphere: 

(4.3 1) 

where 

At steady state, the total torque on the sphere is zero, so from (4.31) 

(4.32) 

The total flux can be derived by integrating the local flux Q($) over the sphere (0 < 
4 < 2.n): 

(4.33) 
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The descending velocity of the sphere relative to the Stokes velocity U ,  is 

(4.34) 

and the rotation of the sphere relative to U,/a is 

(4.35) 
6A, + A3 U* 

Q* = - 
A2 

The integrals in the above equations were evaluated numerically using the 
trapezoidal rule and the results are presented in the following section. 

5. Results 
The solutions in the previous section presume that the clearance between the sphere 

and tube is small compared with the radius of the sphere, so that lubrication theory is 
applicable in the region around the point of minimum clearance -8, < 8 < 8,. The 
axial pressure gradient and velocity outside this zone are negligible compared with 
those inside, so it is the flow in this region that determines the movement of the sphere. 
To show the validity of this assumption, velocities of the sphere are plotted as functions 
of 8, in figure 3 with clearances c = 0.1, 0.05 and 0.025, eccentricity e / c  = 0.5 and 
assuming no-slip boundary conditions. It is seen that when 8, is small, U* and Q* are 
very sensitive to the choice of 8,. However, when 8, is larger than a certain value, the 
velocities are almost independent of 0,. For a smaller clearance, c = 0.025, the width 
of the sensitive zone is seen to be smaller than when c = 0.1. By comparing figures 3 (a)  
and 3 (b), it is also seen that Q* is more sensitive to 8, than U*. In all of the following 
results, we have used 8, = 2n/9 (z 40"). 

It can be seen from symmetry arguments that the use of slip boundary conditions 
does not alter the result that there is no sideways movement of the sphere in the absence 
of inertial terms (Christopherson & Dowson 1959; Bungay & Brenner 1973). 

Figure 4 shows the variation of U* and Q* with the radius of the tube R, with the 
eccentricity e/c = 0.5 and the no-slip boundary conditions. When the clearance 
approaches zero, both U* and Q* approach zero. The velocities increase as the 
clearance gets larger and the increase becomes faster at larger clearance. Q* is seen to 
be much larger than U*. Similar results are seen when the slip boundary conditions are 
applied. 

For a given R, the velocity and rotation are functions of e and the slip parameters 
K~ and K ~ .  We consider thin porous layers for the glycocalyx. Based on estimations 
that eF and cs are about 0.02, x 0.7 and f [  z 1 (Brinkman 1947; Lundgren 1972; 
Kolodziej 1988), we take the slip parameters K~ and K~ to be 0.01 in the calculations 
when slip boundary conditions are applied. Figure 5(a) shows the variation of U* with 
the eccentricity e for four different boundary conditions: (i) no-slip boundary 
conditions at the surfaces of both the tube and the sphere ( K ~  = 0, K~ = 0), (ii) slip at 
the tube wall but no-slip at the sphere surface ( K ~  = 0.01, K~ = 0), (iii) no-slip at the 
tube wall but slip at the sphere surface ( K ~  = 0, K~ = 0.01) and (iv) slip at both surfaces 
( K ~  = 0.01, K~ = 0.01). It is seen that the velocity of the sphere increases as it moves 
away from the centre of the tube. The descending velocity of the sphere increases when 
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t 
0 d 6  6 3  0 d 6  xl3 

60 60 

FIGURE 3 .  Sensitivity of velocities of the sphere to the width of the lubrication zone Oo. e l c  = 0.5, 
K~ = 0, K~ = 0. -, c = 0.1; ------, c = 0.05; .......... c = 0.025. (a) Descending velocity of the 
sphere U*,  (b) rotation of the sphere Q*. 

1.0 1.2 1.4 1.6 1.8 2.0 
R 

FIGURE 4. Variation of the velocities of the sphere, U* and Q*, with the radius of the tube, R. 
e l c  = 0.5, K~ = 0, K~ = 0. -, U * ;  .......... a*. 

slip boundary conditions are applied. By comparing the two middle curves ( K ~  = 0.01, 
K~ = 0) and ( K ~  = 0, K~ = 0.01), the slip parameter on the sphere surface has a slightly 
larger influence on U* than that on the tube wall. Figure 5(b) shows the variation of 
Q* with e, for the same conditions. Q* increases from zero, when the sphere is on the 
axis of the tube, to a maximum value before decreasing as e approaches the gap width. 
Note that the direction of the rotation is opposite to that when the sphere is rolling on 
the nearer tube wall. The decrease of the rotation after e exceeds a certain value is 
caused by the rapid increase of the shear stress on the narrower side of the gap where 
the local clearance is very small. When slip boundary conditions are applied, the 
rotation of the sphere increases. To see the overall effects of the slip boundary 
conditions on U* and Q*, figure 5 ( c )  shows the variation of Q*/U* with e. Q* 
increases much faster than U* with e and overtakes U* at a small eccentricity. It is seen 
that although the slip boundary conditions increase both U* and Q*, the ratio Q*/U*  
decreases. 
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FIGURE 5. Variations of the velociites of the sphere with e for different boundary conditions. R = 1.1. 

K~ = 0.01. (a) Descending velocity of the sphere U*, (b) rotation of the sphere a*, (c)  sZ*/U*. 
-, KT = 0, KS = 0 ;  ------, KT = 0.01, KS = 0 ;  ........., KT = 0, KS = 0.01; ----, KT = 0.01, 
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-0.2 
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FIGURE 6. Comparison between U *  from lubrication theory (-) and U, from Bohlin's 
approximation (.........) when e = 0, K~ = 0, K~ = 0. 
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I " "  

e 
FIGURE 7. Comparison of U* and sZ* with Bungay & Brenner's results (5.2) (.........) and results taken 
from Christopherson & Dowson (0) at different eccentricity when c = 0.001, K* = 0, K~ = 0. (a) U*,  
(b)  Q*. 

FIGURE 8. Fluid velocity profiles in the 6' = 0 plane for specified 4. R = 1.1 and e = 0.05. 
(a) KT = 0, KS = 0,  (b) KT = 0.01, KS = 0.01. 

FIGURE 8. Fluid velocity profiles in the 6' = 0 plane for specified 4. R = 1.1 and e = 0.05. 
(a) KT = 0, KS = 0,  (b) KT = 0.01, KS = 0.01. 

FIGURE 8. Fluid velocity profiles in the 6' = 0 plane for specified 4. R = 1.1 and e = 0.05. 
(a) KT = 0, KS = 0,  (b) KT = 0.01, KS = 0.01. 

FIGURE 8. Fluid velocity profiles in the 6' = 0 plane for specified 4. R = 1.1 and e = 0.05. 
(a) KT = 0, KS = 0,  (b) KT = 0.01, KS = 0.01. 

FIGURE 8. Fluid velocity profiles in the 6' = 0 plane for specified 4. R = 1.1 and e = 0.05. 
(a) KT = 0, KS = 0,  (b) KT = 0.01, KS = 0.01. 
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FIGURE 9. Shear stress contours on the surfaces of the tube and the sphere with different boundary 
conditions. R = 1.1 and e = 0.05. For the no-slip conditions, U* = 0.0021 and Q* = 0.0155 and for 
the slip conditions, U* = 0.0029 and Q* = 0.0189. (a) On the surface of the tube, K~ = 0, K~ = 0; (b) 
on the surface of the tube, K~ = 0.01, K~ = 0.01 ; (c) on the surface of the sphere, K~ = 0, K~ = 0; (d )  
on the surface of the sphere, K~ = 0.01, K~ = 0.01. 
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Bohlin (1960) studied the problem of a sphere's motion on the axis of a tube using 
a reflection method and gave the following formula of the velocity of the sphere relative 
to the Stokes velocity: 

+ ... . (5.1) 
2.10443 2.08877 0.94813 1.372 3.87 4.19 u -I--+----------+----- 
R R3 R5 R6 Rg R" B -  

It is an approximate solution, which gives good results when the radius of the tube is 
large. Figure 6 compares U ,  with U* applying no-slip boundary conditions and zero 
eccentricity. When the radius of the tube is small (R approaches l), Bohlin's 
approximation is not valid. The lubrication theory, on the other hand, gives 
increasingly good accuracy. When the gap is big, the lubrication solution is no longer 
valid and deviates from Bohlin's results. 

Bungay & Brenner (1973) analysed the sedimentation of a closely fitting sphere in a 
fluid-filled tube using a singular perturbation method. In our notation, the results 
obtained (their equations 8.4 and 8.5) are 

d2e/c c3/2 + 0 ( ~ 2 ) ,  (5.2) U* = l , i (G+x)~5/2+0(~3) ,  41/2 1 (e/c)' sZ* =- 
nr3 

J --x 

Figure 7 shows a comparison of our calculations with those of Christopherson & 
Dowson (1959) and Bungay & Brenner (1973) for the velocities as a function of e when 
the clearance c = 0.001. Good agreement between all of the theories is seen for U* 
(figure 7a), but our result for sZ* (figure 7b) differs slightly. This difference decreases 
for smaller values of c. By comparing this figure with figure 5,  it can be seen that both 
U* and sZ* decrease with decreasing c. The ratio sZ*/U*, however, increases. 

Figure 8 shows the velocity profiles along the equator of the sphere, 8 = 0, at 
different values of the circumferential angle, $, for R = 1.1 and e = 0.05. The fluid 
velocities for the no-slip boundary conditions are shown in figure 8 (a) and those of the 
slip boundary conditions ( K ~  = 0.01, K: = 0.01) in figure S(6). Since the sphere has an 
eccentricity, the local clearance, h, varies from 0.15 when $ = 0 to 0.05 when #I = n. 
The velocities change from positive at the maximum clearance to negative at the 
minimum clearance. With the slip boundary conditions, the velocity profiles are flatter 
with a reduced maximum and reduced gradients at the walls of the tube and sphere. 

Figure 9 shows the shear stress distribution inside the lubrication zone on the surface 
of both the tube and the sphere with no-slip and slip boundary conditions for R = 1.1 
and e = 0.05. U* = 0.0021 and sZ* = 0.0155 with no-slip boundary conditions, and 
U* = 0.0029 and sZ* = 0.0189 with slip boundary conditions. Because of the 
symmetries, only one quarter of the surfaces are plotted. On the tube wall, the 
maximum shear stress occurs at I9 = 0 where the local clearance is the least and 
decreases quickly as 0 increases towards the edge of the lubrication zone where the 
shear stresses are about 1 / 10 of their values at the central area. The shear stress on the 
tube wall is positive at the maximum clearance, decreasing as the gap decreases to a 
negative minimum value at $ = n. On the surface of the sphere, however, the shear 
stress is always positive. By comparing the slip and no-slip conditions, it is seen that 
the slip boundary conditions ( K ~  = 0.01, K~ = 0.01) generally reduce the shear stresses 
on both surfaces. 
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FIGURE 10. Pressure gradient, G = -apP/ax, contours in the lubrication zone. R = 1.1 and e = 0.05. 
For the no-slip condition, U* = 0.0021 and sZ* = 0.0155 and for the slip conditions, U* = 0.0029 
and sZ* = 0.0189. (a) K~ = 0,  K~ = 0 ;  (b )  K~ = 0.01, K~ = 0.01. 

Figure 10 shows the distribution of the pressure gradient, G, inside the lubrication 
zone for the same conditions as figure 9. G is largest at the minimum clearance, 8 = 
0, and decreases very quickly as 8 increases, so that at the edge of the lubrication zone, 
G is relatively small which is consistent with the assumption that the pressure variation 
outside the lubrication zone is negligible. Along the equator of the sphere, 8 = 0, G 
increases slightly, with 4 reaching a maximum value at x / 2 ,  and then decreases 
relatively quickly. This is due to the rotation of the eccentric sphere, which influences 
the flow pattern at different circumferential positions. The influence of slip boundary 
conditions ( K ~  = 0.01, K~ = 0.01) on G is shown in figure 10(b). The pressure gradient 
in the lubrication zone is greatly reduced when slip boundary conditions are applied. 
The parallelness of the pressure gradient contours in the circumferential direction 
shows consistency with our assumption that the circumferential pressure gradient is 
negligible compared to the axial pressure gradient. 

6. Discussion 
Analysis of a deformabie porous layer using binary mixture theory shows that, when 

the lengthscale on which the velocity varies in the porous layer is small compared with 
the local clearance between the sphere and the tube, the effect of the porous layer can 
be represented by a simple slip condition applied at the interface between the porous 
layer and the pure fluid. This can result from two different conditions: the porous layer 
being thin, e 4 h, or the drag coefficient being large so that k-'/2 -g h and the fluid 
movement in the porous layer is confined to a thin region near the interface. 

Two assumptions at the interface between the porous layer and the fluid are made. 
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The first assumption, (2.9), is that the velocity tangential to the surface is continuous 
across the interface. If a discontinuity is allowed and the volume-averaged velocity in 
the porous medium is proportional to the fluid velocity then the boundary conditions 
(4.21) and (4.22) are unchanged but the slip parameters, K~ and K ~ ,  are modified by the 
constant of proportionality. The second assumption, (2. lo), concerns the distribution 
of the shear stress within the porous layer. Assuming a different distribution again 
leads to the same form of boundary conditions, (4.21) and (4.22), but with 
modifications to the slip parameters. Both (2.9) and (2.10) are the simplest assumptions 
that lead to the proper conditions when the fluid volume fraction approaches either 1 
or 0. 

Lubrication theory was used to study the motion of a sphere in a tube when the 
clearance between the sphere and the tube is small compared with the radius of the 
sphere. The results when the sphere is in the centre of the tube and the no-slip boundary 
conditions are used complement previous calculations using the method of reflections 
(Bohlin 1960), coinciding at moderate values of the clearance and providing a 
reasonable result when the clearance is small. The calculations when the sphere is 
placed off the axis of the tube can only be compared to the results by Christopherson 
& Dowson (1959) who used a minimum energy argument to calculate the stable 
position of a falling sphere in a narrow tube. Good agreement is seen when the 
clearance is small. The rotation of the sphere is in the opposite sense to that it would 
have if it were rolling down the nearest wall as shown by Christopherson & Dowson 
(1959) and Bungay & Brenner (1973). This rotation has the effect of facilitating flow 
through the region with the largest gap and hence the lowest resistance. As the 
eccentricity increases, the descending velocity of the sphere increases relatively slowly 
until it reaches a maximum just before the sphere touches the wall of the tube. The 
rotation of the sphere also increases as the eccentricity increases until it reaches a 
maximum some time before contact is made. Except for a very small region near the 
centre of the tube, the ratio of the rotational velocity to the descending velocity is 
greater than one. The ratio of the two velocities increases with decreasing clearance. 

As would be expected, the use of slip conditions on the walls of the sphere and the 
tube to model the effects of porous layers increases both the falling and rotational 
velocities. Over the range of conditions studied, the results for slip conditions on the 
sphere alone were very slightly larger than the results for slip conditions on the tube 
alone and the effects were approximately additive when slip conditions were applied at 
both surfaces. With slip boundary conditions, the pressure gradient and the shear 
stresses on both surfaces decrease significantly. The magnitude of the effect depends, 
of course, upon the slip parameters which are used. Lack of information about the 
composition and properties of the glycocalyx make it difficult to calculate a realistic 
slip parameter for physiological flows. The properties used to calculate the slip 
parameters used in this study are not unreasonable but they should be taken as 
estimates, not definitive descriptions of the glycocalyx on either red blood cells or the 
endothelial cells lining blood vessels. The glycocalyx is highly charged and charge 
effects will affect its deformability and will also influence the flow by creating streaming 
potentials which are not considered in this paper. The linear effects of the fixed charge 
of the glycocalyx on its mechanical properties, i.e. its elasticity and permeability, are, 
however, included in the theory through their effect on the Lami coefficients and the 
permeability. In any case, this study does indicate that the presence of a glycocalyx-like 
layer can have a significant influence on the motion of a particle moving through a 
narrow tube. One case which would be interesting to study is when the gap is so small 
that the porous layers on the sphere and the tube wall touch each other. In this case, 
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solid contact forces must be considered and the motion of the sphere could be quite 
different from that predicted by lubrication theory. The calculation of motion of a 
sphere in a cylindrical tube with no porous layers itself would have some applications 
in the studies of transport of particles through a pore, which is of interest in many 
physiological contexts (e.g. Hill & Hill 1987). 

We would like to thank Dr C. G. Phillips for helpful discussions on the slip 
boundary condition for the porous layer. 
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